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Using the recently developed multiregion, relaxed MHD (MRxMHD) theory, which bridges the

gap between Taylor’s relaxation theory and ideal MHD, we provide a thorough analytical and

numerical proof of the formation of singular currents at rational surfaces in non-axisymmetric ideal

MHD equilibria. These include the force-free singular current density represented by a Dirac

d-function, which presumably prevents the formation of islands, and the Pfirsch-Schl€uter 1/x
singular current, which arises as a result of finite pressure gradient. An analytical model based

on linearized MRxMHD is derived that can accurately (1) describe the formation of magnetic

islands at resonant rational surfaces, (2) retrieve the ideal MHD limit where magnetic islands are

shielded, and (3) compute the subsequent formation of singular currents. The analytical results are

benchmarked against numerical simulations carried out with a fully nonlinear implementation of

MRxMHD. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4906888]

I. INTRODUCTION

Ideal MHD with nested flux surfaces predicts the

existence of singular current densities forming at rational

surfaces in three-dimensional equilibria.1–5 These current

singularities consist of a Pfirsch-Schl€uter component, which

arises as a result of finite pressure gradient, and a d-function

current density, which presumably prevents the formation of

islands that would otherwise develop in a non-ideal plasma.

The singularities arise from requiring the conservation of

charge, r � j ¼ 0, which gives rise to a magnetic differential

equation for the parallel current, namely, B � ru ¼ �r � j?,

where j � uBþ j?. Magnetic differential equations are

densely singular.6 Their singular nature is exposed as follows.

First, straight-field-line coordinates may be constructed on

each flux surface, giving
ffiffiffi
g
p

B � r ¼ i-@h þ @f. Here,
ffiffiffi
g
p

is

the Jacobian of the coordinates, i- is the rotational transform

on a given flux surface, and h and f are the poloidal and toroi-

dal straight-field-line angles, respectively. Then, by using a

Fourier representation, u ¼
P

mn umn exp½iðmh� nfÞ�, the

magnetic differential equation implies

umnðxÞ ¼ hmnðxÞ=xþ DmndðxÞ; (1)

where x ¼ i-m� n; hmn ¼ ið ffiffiffigp r � j?Þmn, and Dmn is an arbi-

trary constant. The first term on the right-hand-side of Eq.

(1) is the Pfirsch-Schl€uter component of the parallel current

and presents a 1/x singularity around rational surfaces. Its

magnitude is proportional to the pressure gradient by virtue

of the force-balance equation j� B ¼ rp, which gives

j? ¼ B�rp=B2. The second term on the right-hand-side of

Eq. (1) is a parallel d-current density at the rational surfaces.

Its magnitude, Dmn, remains undetermined here.

Since rational numbers are dense in real space, the

singular currents implied by Eq. (1) are expected to be

densely packed within the plasma volume, unless i- is

irrational and constant across flux surfaces.

While analytical formulations have been developed

to describe such currents in simplified geometries,7,8 and the

d-currents have been computed using either ideal MHD ini-

tial value codes9 or linearized, perturbed ideal equilibrium

codes,10,11 a numerical proof of their existence using nonlin-

ear MHD equilibrium codes has been hampered by the

assumption of smooth functions made in conventional MHD

equilibrium models such as VMEC.12 In particular, to our

knowledge, no numerical model has been shown to compute

the 1/x pressure-driven singular currents.

Recently, a theory based on a generalized energy princi-

ple, referred to as multiregion, relaxed MHD (MRxMHD),

was developed and incorporates the possibility of non-

smooth solutions to the MHD equilibrium problem and

bridges the gap between Taylor’s relaxation theory13 and

ideal MHD. In this paper, we develop an analytical model

based on linearized MRxMHD theory and compare the pre-

dictions of this model to those of a fully nonlinear numerical

implementation of MRxMHD.

The linearized model can accurately (i) describe the

formation of magnetic islands at resonant rational surfaces,

(ii) retrieve the ideal MHD limit in which magnetic islands

are shielded, and (iii) compute the subsequent formation of

both d-currents and pressure-driven 1/x currents. The model

is restricted to slab, linearly perturbed equilibrium solutions.

However, to our knowledge, this is the first model that can

achieve points (i)–(iii) at the same time.

We provide a numerical proof of the formation of singu-

lar currents in non-axisymmetric ideal MHD equilibria by

leveraging a fully nonlinear numerical implementation of the

MRxMHD model. For each numerical result, we perform

careful convergence studies and analytical benchmarks.

In Sec. II, we summarize the main elements of the

MRxMHD theory. The analytical model based on thea)Electronic mail: joaquim.loizu@ipp.mpg.de
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linearized MRxMHD theory is derived in Sec. III, showing

that both magnetic islands and singular currents can be cap-

tured by the same model. In Sec. IV, we use a fully nonlinear

implementation of the MRxMHD theory to benchmark the

linear results. A conclusion and outlook follow in Sec. V.

II. MRxMHD THEORY

The classical MHD energy functional14 is

W ¼
ð

Vp

p

c� 1
þ B2

2l0

 !
dV; (2)

where Vp is the plasma volume and c is the adiabatic index.

Ideal MHD equilibria are found by extremizing W subject to

certain constraints. First, because the fluid is assumed to be

perfectly conducting, the magnetic field is frozen into the

plasma and cannot change its topology. For a given plasma

displacement n, Faraday’s law and ideal Ohm’s law restrict

the possible variations of B to the form dB ¼ r� ðn� BÞ.
This is a continuous topological constraint that is equivalent

to the conservation of magnetic helicity13,15

K ¼
ð

V

A � B dV; (3)

for any volume V bound by field lines in the plasma. Here, A

is the vector potential such that B¼r�A. The magnetic

helicity can be related to the Gauss linking number and thus

can be interpreted as a measure of how intertwisted are field

lines.16 Second, the continuity equation, @tqþr � ðqvÞ ¼ 0,

and the equation of state, dt(p/qc)¼ 0, constrain the possible

variations of pressure. Here, p is the plasma pressure, q is

the plasma density, v is the mean plasma velocity, and

dt¼ @tþ v �r. These equations translate into the constraint

dp ¼ ðc� 1Þn � rp� cr � ðpnÞ. The first variation of Eq. (2)

under these two constraints, assuming a plasma displacement

vanishing at the boundary, is

dW ¼
ð

Vp

ðrp� j� BÞ � n dV : (4)

Thus, extremizing W under ideal constraints leads to the

force-balance equation j�B¼rp. In order to uniquely

define an equilibrium, in addition to the shape of the plasma

boundary, it is required to specify two radial profiles,14 e.g.,

the pressure p(w) and the rotational transform i-ðwÞ at each

flux surface.

The MRxMHD theory was first proposed by Hole,

Hudson, and Dewar17,18 and considers a wider class of

plasma equilibria by exploiting the ideas developed by

Bhattacharjee and Dewar19 to generalize the Kruskal-

Kulsrud variational principle.14 In MRxMHD, rather than

continuously constraining the topology, the topology is dis-
cretely constrained, thus allowing for partial relaxation. It

thus bridges the gap between Taylor’s relaxation theory and

ideal MHD in a very precise way.20 Moreover, it allows for

the possibility of non-smooth solutions, which are ubiquitous

to the three-dimensional MHD problem.

The plasma is partitioned into a finite number NV of

nested volumes V l; l ¼ 1; 2;…;NV , which undergo Taylor

relaxation. These volumes are separated by ideal interfaces

I l; l ¼ 1; 2;…;NV � 1, which are assumed to be magnetic

flux surfaces. The energy local to each volume is

Wl ¼
ð
Vl

p

c� 1
þ B2

2l0

 !
dV : (5)

In each volume V l, variations are allowed in the pressure, the

magnetic field, and the geometry of the interfaces, in order to

extremize the local energy Wl. The class of possible variations

is defined by certain constraints, which are the discrete equiv-

alents of the continuous constraints imposed in ideal MHD.

First, the magnetic field on the interfaces must remain tangen-

tial, B � n¼ 0, which means that the interfaces are good flux

surfaces. Second, the magnetic fluxes in each volume are con-

served, which is the discrete equivalent of providing the rota-

tional transform profile, as we shall see later. Third, the

magnetic helicity Kl is conserved in each volume V l, which is

the discrete equivalent of the continuous constraint on the

helicity in ideal MHD, and a generalization of the single con-

straint on the global helicity in Taylor’s theory. Fourth, the

ideal-gas constraint applied to individual fluid elements in

ideal MHD is instead applied to each entire relaxed volume,

namely, plV
c
l ¼ al, where al is a constant and Vl is the volume

of V l. This last constraint is the discrete equivalent of speci-

fying the pressure or mass profile. In order to find MRxMHD

equilibria, an energy functional is constructed

F ¼
X

l

F l ¼
X

l

Wl �
ll

2
Kl � Kl;0ð Þ

� �
; (6)

where Wl is given by Eq. (5) and ll is a Lagrange multiplier

introduced explicitly to enforce a constant helicity Kl,0 in each

volume V l. The flux constraints and the tangentiality condition

on the interfaces can be enforced implicitly by constraining

the representation of the magnetic field or vector potential

(see, e.g., Ref. 21 for a more detailed discussion). The first

variation of the local, constrained energy functional F l, is

dF l¼
ð
Vl

r�B�llBð Þ �dAdV�
ð
@Vl

plþ
B2

2

� �
�ndV; (7)

for arbitrary variations in the field, dB ¼ r� dA, and in the

internal interfaces geometry, n. Therefore, states that extrem-

ize the MRxMHD energy functional F satisfy

r� B ¼ llB inV l; (8)

½½pþ B2=2�� ¼ 0 in I l; (9)

where [[�]] denotes the jump across an interface. Equation

(8) is a Beltrami equation for the magnetic field and implies

complete plasma relaxation in each volume V l, thus allowing

magnetic islands and chaos to form. Equation (9) represents

a force-balance condition on the interfaces I l and ensures

the continuity of total pressure. Both the plasma pressure and

magnetic field can nevertheless be discontinuous and there-

fore both stepped-pressure profiles and singular currents are

possible in MRxMHD equilibria. As a matter of fact, by

022501-2 Loizu et al. Phys. Plasmas 22, 022501 (2015)
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virtue of Ampere’s law, associated with a field discontinuity

[[B]] there is a singular, d-current density, j, with magnitude

[[B]]� n, where n is the unit vector normal to the ideal

interface.

As in ideal MHD, in addition to the shape of the plasma

boundary, certain quantities must be specified in order to

uniquely define a MRxMHD equilibrium. Instead of continu-

ously prescribing the pressure profile as a function of the

toroidal flux, the pressure pl must be prescribed in each vol-

ume V l, together with the amount of enclosed toroidal flux

DWt,l in that volume. In addition, both the helicity Kl and

the enclosed poloidal flux DWp must be prescribed in each

volume, except for the innermost volume which has a single

boundary interface and only the helicity is required.

Alternatively, as we shall see later, instead of (Kl, DWp), it is

possible to specify (ll, DWp) or ði-þl ; i-�l Þ, namely, the rota-

tional transform on the interfaces bounding each volume.

This last possibility is clearly the discrete equivalent of

specifying the rotational transform profile in ideal MHD. In

fact, there is a clear connection between Taylor’s relaxation

theory, MRxMHD, and ideal MHD. For NV¼ 1, MRxMHD

reduces to Taylor’s theory, while ideal MHD is exactly

retrieved for NV!1.20

Finally, we would like to remark that a close examina-

tion of the force-balance condition, Eq. (9), reveals that the

existence of ideal interfaces in general three-dimensional

equilibria requires the rotational transform on the interfaces

to be strongly irrational,22 by which we mean that it satisfies

a Diophantine condition.23 This is consistent with the

Kolmogorov-Arnold-Moser (KAM) theorem,23 which shows

that for non-integrable Hamiltonian systems there exists a

finite measure of invariant tori provided that the rotational

transform is sufficiently irrational. However, this subtle point

raises the question of whether it is possible to describe the

formation of singular currents at rational surfaces within

MRxMHD. We expect that this should be possible by virtue

of the mathematical proof for the asymptotic convergence of

MRxMHD towards ideal MHD.20 In Secs. III and IV, we

shall give a rigorous analytical and numerical proof that this

is indeed possible.

III. MODEL FOR ISLAND SHIELDING AND SINGULAR
CURRENT FORMATION

Perhaps the simplest but non-trivial examples of current

sheets are those in slab geometry. The Hahm-Kulsrud-Taylor

model7 is one such well-known example in which singular

currents and magnetic islands are realized as exact solutions

of the linearized magnetostatic equations. In this paper, we

consider this geometry as a minimum model to describe the

shielding of magnetic islands and the subsequent formation

of singular currents. We first derive analytically MRxMHD

equilibrium states where a magnetic island is produced by a

small but resonant magnetic perturbation on the boundary.

Then, we look for the analytical limit in which the island is

shielded and compute the resulting singular currents forming

at the resonant rational surface.

We start by considering a MRxMHD equilibrium for a

single-volume, zero-pressure, plasma slab with torus

periodicity. We write the position r ¼ x̂i þ yĵ þ zk̂ with a

general set of coordinates (s, h, f), where h, f 2 [0, 2p] and s
2 [�1, 1], such that x¼ h and y¼ f are the two periodic

coordinates and z¼R(s, h, f) is an interpolation between the

geometries of the two interfaces defining the boundary of the

volume, namely, R(61, h, f). In the simplest case of an

unperturbed boundary, we have R(s, h, f)¼R0(1� s)/2

þR1(1þ s)/2, where R0 and R1 give the position of the two

interfaces and are assumed to be given.

The magnetic field in the relaxed volume satisfies

r�B¼lB with topological constraints B �rs¼ 0 at the

two interfaces, and the general solution in these coordinates

is simply B ¼ ðBs;Bh;BfÞ ¼ ð0;B0 sinð�lsÞ þ B̂0 cosð�lsÞ;
B0 cosð�lsÞ � B̂0 sinð�lsÞÞ in the contravariant basis. Here,

�l ¼ lD=2 with D¼R1�R0, and B0, B̂0 are two arbitrary

constants. The equilibrium state is thus uniquely determined

by three constants, namely, ð�l;B0; B̂0Þ. Similarly to Ref. 13,

these three constants can be directly related to the enclosed

toroidal and poloidal fluxes, DWt ¼ 2pB0D sin �l=�l and

DWp ¼ 2pB̂0D sin �l=�l, and the volume helicity

K ¼ 2p2ðB2
0 þ B̂

2

0ÞD2=�l ¼ ðDW2
t þ DW2

pÞ�l=ð2 sin2�lÞ, which

is invariant to single-valued gauge transformations. In Ref.

13, however, the relaxed volume is a cylinder with one single

outer interface, and thus only two constants, DWt and K, are

required to determine the solution. The rotational transform

on the interfaces, i-6, can also be related to the three con-

stants ð�l;B0; B̂0Þ, as i-6 ¼ Bhð61Þ=Bfð61Þ. Therefore, the

equilibrium state can be obtained by providing different

triplets of constants, e.g., ð�l;B0; B̂0Þ; ðDWt;DWp;KÞ, or

ðDWt; i-þ; i-�Þ.
With the purpose of building a simple equilibrium state

with a resonant rational surface, we choose i-� ¼ �i-þ, which

is equivalent to setting B̂0 ¼ 0 or DWp¼ 0.7 In doing so, we

allow for the existence of a rational surface i- ¼ 0, which is

resonant to any toroidally symmetric perturbation (n¼ 0,

m 6¼ 0). As a matter of fact, in the case of an unperturbed

boundary, the magnetic field displays good flux surfaces

everywhere (Fig. 1), and the rotational transform profile can

be easily computed, i-ðsÞ ¼ tanð�lsÞ, thus i-ð0Þ ¼ 0.

We are now in the position to consider a resonant pertur-

bation at the boundaries and to calculate the new equilibrium

state which should display an island around the resonant

rational surface. The perturbed boundaries are described

through their surface geometry, Rð�1; h; fÞ ¼
P1

m¼0 R0;m

cosðmhÞ and Rðþ1; h; fÞ ¼
P1

m¼0 R1;m cosðmhÞ, where only

n¼ 0 perturbations are considered in order to select a single

resonant rational surface i-res ¼ n=m ¼ 0. For the sake of

simplicity (we target the minimum model for the generation

and shielding of magnetic islands), we consider only the

m¼ 0, 1 components.

This perturbation alters the metric elements and the

Jacobian, thus complicating the equation r�B¼lB, but a

solution can be found analytically in the limit of small per-

turbations: R0,1, R1,1�D, where D¼R1,0 – R0,0. In this limit,

the general solution is of the form

B ¼ Bu þ ðbs sin h; bh cos h; bf cos hÞ; (10)

where Bu is the unperturbed solution and bs(s), bh(s), and

bf(s) are to be found by inserting Eq. (10) into the Beltrami
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equation. In doing so, we use the general relation

ðr � BÞ � ed ¼
ffiffiffi
g
p �1@aBb eabcgcd, where eabc is the Levi-

Civita tensor and gcd � ec � ed ¼ @cr � @dr is the metric ten-

sor, whose elements are computed by differentiating the

position vector with respect to the coordinates (s, h, f). The

problem reduces to a second order, ordinary differential

equation for bf(s)

b00f þ kbf ¼ GðsÞ ; (11)

with boundary condition bf( 6 1)¼ 0, which results from

B � rs ¼ 0 at the two interfaces. Here, k ¼ �l2 � D2=4 and

the function G(s) measures the external perturbation,

GðsÞ ¼ �lD2=4½�0ð1� sÞ þ �1ð1þ sÞ�Bh;u � 2�l2ð�1 � �0ÞBf;u,

where �l¼Rl,1/D � 1. The solution of Eq. (11) depends on

the sign of k and is given in Appendix A, together with the

corresponding expressions for bs(s) and bh(s). In all cases,

however, the equilibrium state is now uniquely determined

by a set of six constants, e.g., ð�l;B0; B̂0;D; �0; �1Þ. Provided

that �0 6¼ �1, a Poincar�e plot of the magnetic field line trajec-

tories reveals the existence of an island (Fig. 1). We remark

that this single-volume MRxMHD equilibrium state corre-

sponds to the fully relaxed Taylor state. As before, we can

relate the enclosed toroidal flux, DWt, and the rotational

transform on the interfaces, i-6, to the constants ð�l;B0; B̂0Þ.
Interestingly, the corresponding expressions are, to first order

in �, the same as in the unperturbed system (see Appendix

B). Therefore, the equilibrium state may be determined by

providing, ð�l;B0; B̂0;D; �0; �1Þ or ðDWt; i-þ; i-�;D; �0; �1Þ.
With the purpose of approaching the ideal MHD limit in

which the island is shielded by the topological constraints

and a singular current appears at the resonant rational sur-

face, we now consider that the equilibrium state we have

constructed consists of multiple relaxed volumes. In doing

so, we can enforce NV� 1 ideal interfaces to exist inside the

boundaries of the system, with NV being the number of

relaxed volumes. Theoretically, in the limit NV ! 1, we

know that MRxMHD converges to ideal MHD.20 However,

as we show now, in the zero-pressure limit, both island

shielding and singular current formation can be obtained

with NV¼ 3. In fact, with NV� 1¼ 2 internal interfaces, we

can squeeze the island by bringing them arbitrarily close to

the resonant rational surface, thus retrieving the ideal MHD

equilibrium state with zero pressure.

We consider three volumes V l, l¼ 1, 2, and 3. In each

volume, s 2 [�1, 1], and h,f 2 [0, 2p]. The function Rl(s, h,

f) is given at the interfaces by

Rlðs; hÞ ¼
Rl;0 þ Rl;1 cos h if s ¼ þ1

Rl�1;0 þ Rl�1;1 cos h if s ¼ �1
;

�
(12)

where (R0,0, R0,1, R3,0, R3,1) define the geometry of the bound-

ary interfaces and are assumed to be given. The remaining

constants (R1,0, R1,1, R2,0, R2,1) define the geometry of the in-

ternal interfaces and are unknown a priori. Their values are

determined by the force-balance condition, which is [[B2]]¼ 0

across each internal interface. The solution for the magnetic

field in each relaxed volume V l is given by Eq. (10) together

with Eq. (A7), and its dependence is as follows:

Bl ¼ BlðB0l; B̂0l; �ll;Dl; �l�1; �lÞ; (13)

for l¼ 1, 2, and 3, and where Dl¼Rl,0 – Rl–1,0, �l–1¼Rl–1,1/

Dl, and �l¼Rl,1/Dl. After providing the geometry of the boun-

daries and the triplet ðDWt;l; i-þl ; i-
�
l Þ for each volume V l, the

geometries of the internal interfaces remain undetermined,

and the self-consistent equilibrium solution for Bl is found by

enforcing the force-balance condition, [[B2]]¼ 0, across each

internal interface. Keeping, as before, only first order terms in

the geometrical perturbation amplitudes, �l, the force-balance

condition can be written as ½½B2��m¼0 þ½½B2��m¼1 cos h ¼ 0,

and since the two components must vanish independently,

this gives four constraints in total (two per interface). More

precisely, the m¼ 0 and m¼ 1 components of the force-

balance conditions at the two internal interfaces lead to two

decoupled linear systems whose solutions provide, respec-

tively, expressions for (D1, D2) and (R1,1, R2,1), thus uniquely

determining Bl. A detailed derivation is given in Appendix C.

Figure 2 shows an example of Poincar�e plot for a three-

volume MRxMHD equilibrium state (with and without per-

turbation) computed from the analytical solution for the mag-

netic field. We remark that the positions and geometries of

the internal interfaces are not imposed. They are self-

consistently computed from the force-balance condition.

However, there is freedom in setting the outer boundary geo-

metries, the enclosed toroidal fluxes in each relaxed volume,

and the rotational transform on each interface.

The area that each volume V l occupies in a Poincar�e
section is proportional to the enclosed toroidal flux, given

FIG. 1. Poincar�e plot of the magnetic

field trajectories at fixed f¼ 0, for a

single-volume MRxMHD equilibrium

state. Left: R0,1¼R1,1¼ 0. Right:

R0,1¼�10�2, R1,1¼ 10�2. Results

obtained from the analytical solution

for B, with DWt ¼ 1; i-6 ¼ 61:618,

and D¼ 1.
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that DWt;l ¼ 2pB0lDl sin �ll=�ll and that Dl is the average sep-

aration between the two interfaces defining the volume V l.

Therefore, a sequence of MRxMHD equilibrium states in

which the enclosed toroidal flux DWt,2 approaches zero and

the rotational transform on the internal interfaces, i-�2 and i-þ2 ,

approach the resonant value i-res ¼ 0, should squeeze the

island and make it vanish, thus retrieving the ideal MHD

limit. The vanishing of the island should occur if the m¼ 1

components of the internal interfaces deformation, R1,1 and

R2,1, converge to the same finite value when DWt;2; i-6
2 ! 0.

However, as shown in Appendix C, the solution for the inter-

faces deformation is R ¼M�1S and both detðMÞ and S go

to zero when DWt;2; i-6
2 ! 0. Thus, in the same way that

limx;y!0 x=y is not defined unless the rate at which x and y
approach zero is specified, we need to specify the exact way

i-6
2 and DWt,2 approach zero. For the particular case of an

unperturbed, single relaxed volume, both quantities approach

zero at the same rate, but here we may consider more general

limits. Consider then

i-6
2 ¼ 6Xa; (14)

DWt;2 ¼ Xb; (15)

where a, b> 0, and X ! 0. The self-consistent solution for

the geometry of the internal interfaces is then

lim
X!0

D1 ¼ lim
X!0

D3 ¼ 1=2 ; lim
X!0

D2 ¼ 0 ; (16)

lim
X!0

R1;1 ¼ lim
X!0

R2;1 ¼
j
2

R0;1 þ R3;1ð Þ; (17)

for b> a, and where j 2 [0, 1] depends on the magnitude of

the rotational transform on the external interfaces and its

exact expression is given in Appendix C. Equation (17)

implies that for b> a the magnetic island should vanish.

This result provides a precise way to shield the island form-

ing around the resonant rational surface and thus to retrieve

the ideal MHD limit in which singular currents are expected

to develop.

Figure 3 shows an example of a sequence of MRxMHD

equilibrium states with decreasing X and where a¼ 1 and

b¼ 2.5 have been chosen. As expected, the island is

squeezed and the magnitudes of R1,1 and R2,1 converge to the

same value, as shown in Fig. 4. Notice that in both Figs. 2

and 3 there is a m¼ 1 and n¼ 0 island forming around the

resonant rational surface, but with a different poloidal phase.

This is simply due to the fact that the signs of R1,1 and R2,1

are reversed.

We remark that for b� a, however, R1,1 and R2,1

converge to different values (see Appendix C) and thus the

interfaces intersect each other, indicating that in this case the

assumed geometrical description of the interfaces is not

sufficient. This suggests that other MRxMHD equilibrium

solutions with non-trivial geometry may exist. As a matter of

fact, plasmoid solutions to the same equilibrium problem

have been constructed in a recent publication.24 Despite this

apparent non-uniqueness of solutions, which deserves further

investigation, we target here the particular limit of ideal

MHD, which excludes plasmoid-like solutions.

The limit defined above, Eqs. (16) and (17), corresponds

to the ideal MHD limit, since the island vanishes completely

and magnetic flux surfaces are present everywhere. As pre-

dicted by ideal MHD, we expect a d-current forming at the

resonant rational surface, which corresponds here to the two

coinciding interfaces. This singular current density arises

naturally because of a discontinuity in the tangential mag-

netic field. More precisely, we have that

j ¼ ½½B�� � n dði-� i-resÞ; (18)

where n is the unit vector normal to the magnetic flux sur-

face and here [[B]]¼B3(s¼�1)�B1(s¼þ1), since the

volume V2 vanishes in the limit X! 0. We can write an ana-

lytical expression for the discontinuity, [[B]], by using Eq.

(10) in the limit defined by Eqs. (16) and (17). We must dis-

tinguish the two cases l> 1 and l< 1 for which the solution

of the Beltrami equation is different, although the transition

from one solution to the other at l¼ 1 is smooth (see

Appendix A). In both cases,

lim
X!0
½½Bf�� ¼ 0 ; (19)

lim
X!0
½½Bh�� ¼ ½½bh�� cos h 6¼ 0; (20)

where bh can be expressed using Eq. (A7). This indicates

that there is a singular d-current density along the f direction

and with a poloidal average of zero. For l> 1,

bh½ �½ � ¼ 2kB0 sin �l
D

tan k þ cotkð Þ R0;1 � R3;1ð Þ; (21)

where B0 � B01; �l � �l1; D � D1; k � k1 and we have used

R1,1¼R2,1. For l< 1,

FIG. 2. Poincar�e plot of the magnetic

field trajectories at fixed f¼ 0, for a

three-volume MRxMHD equilibrium

state. Left: R0,1¼R3,1¼ 0. Right:

R0,1¼�10�2, R3,1¼ 10�2. Thick lines

indicate the internal interfaces. Results

obtained from the analytical solution

for B, with fluxes DWt,1¼DWt,3

¼ 0.1695, DWt,2¼ 0.6610, and rota-

tional transforms i-�1 ¼ �1:618; i-þ1 ¼
i-�2 ¼ �0:679; i-þ2 ¼ i-�3 ¼ 0:679, and

i-þ3 ¼ 1:618. System size is

D1þD2þD3¼ 1.
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bh½ �½ � ¼ 2kB0 sin �l
D

2

sinh2k
R0;1 � R3;1ð Þ : (22)

Figure 5 confirms the presence of such a d-current

density in the ideal MHD limit. A prediction of the

magnitude of the d-current is therefore possible by using

MRxMHD to compute the discontinuity in the tangential

field that remains when the island is shielded in between two

ideal interfaces.

We can retrieve the Hahm-Kulsrud-Taylor (HKT)

solution for the d-current,7 by taking the limit of small �l in

Eq. (22), identifying a�D and 2d� (R0,1 – R3,1), which

gives

Bh½ �½ � ¼ 2�lB0

sinha
2d cos h (23)

and by noticing that 2�lB0 is equal to the poloidal field at the

outer boundary, Bh3(s¼þ1), which is labeled ‘B0’ in Ref. 7.

FIG. 3. Sequence of MRxMHD equi-

librium states with decreasing X2 [0.1,

0.6] with a¼ 1 and b¼ 2.5. Here, the

boundary perturbations are R0,1¼ 0

and R3,1¼ 1� 10�2. In the bottom

right panel equilibrium, we have

D2¼ 2.61� 10�3, R1,1¼ 4.97� 10�3,

and R2,1¼ 4.55� 10�3; therefore,

jR2;1 � R1;1j=D2 	 0:1 < 1 ensures no

crossing.

FIG. 4. Geometrical parameters of the inner volume V2 as a function of the

sequence parameter X. On the right panel, R1,1 (crosses) and R2,1 (stars) con-

verge to the theoretical value (dashed line) computed from Eq. (17).

FIG. 5. Discontinuity in the poloidal field as a function of the sequence pa-

rameter X. Left: m¼ 0 component, which is expected to be zero in the limit

X ! 0, see Eq. (20). Right: m¼ 1 component, expected to be finite in the

limit X! 0, with a theoretical value given by Eq. (21) (dashed line).
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This shows that the HKT solution is only valid in the limit of

small rotational transform, i.e., dominant toroidal field.

Finally, we consider a finite-pressure MRxMHD equilib-

rium state, with the purpose of describing the formation of

pressure-driven singular currents around the resonant

rational surface in the ideal MHD limit. For the sake of sim-

plicity, we consider a stepped-approximation to a pressure

profile that is linear in toroidal flux, p(W)¼ p0(1 – W),

W2 [0, 1], with a large number of relaxed volumes, NV
 1.

Similarly, the rotational transform on the interfaces approxi-

mates a linear profile, i-ðWÞ ¼ i-0ð2W� 1Þ.
The solution for the magnetic field Bl in each relaxed

volume V l is given by Eq. (10) together with Eq. (A7), and

its complete knowledge requires solving the multi-volume

force-balance equations, Eqs. (C3) and (C4), which provide

expressions for the geometry of the internal interfaces,

namely, {Dl, Rl,1}.

An example of such an equilibrium is given in Fig. 6,

showing that the magnetic island produced by a resonant per-

turbation can be shielded by following the same procedure

as defined previously. More precisely, the enclosed toroidal

flux in the innermost volume is DWt¼Xb and the rotational

transform on the innermost interfaces is i-6 ¼ 6Xa.

As before, a d-current develops at the rational surface in

the limit X ! 0, except this time a pressure-driven singular

current is also established around the resonant rational sur-

face. Figure 7 shows the formation of such current for finite

pressure gradient.

We remark that since MRxMHD is a weak formulation

to the MHD problem,21,25 the local current densities pro-

duced by the finite field discontinuities in Fig. 7 should not

be interpreted as local singularities; instead, their integral

over an arbitrary finite surface gives the total actual current

across such surface. This current is expected to be propor-

tional to the pressure gradient jrpj � p0 and to diverge as

1=ði-� i-resÞ. Both properties are confirmed by Fig. 8.

In this section, we have developed an analytical model

based on the linearized MRxMHD theory. This model can

accurately (1) describe the formation of magnetic islands at

resonant rational surfaces, (2) retrieve the ideal MHD limit

where magnetic islands are shielded, and (3) compute the

subsequent formation of both d-currents and pressure-driven

1/x currents. The model is of course restricted to slab, line-

arly perturbed equilibrium solutions; however, to our knowl-

edge, this is the first model that can achieve points (1)–(3) at

the same time. In the next section, we use a fully nonlinear

implementation of the MRxMHD theory to benchmark the

analytical results.

IV. NONLINEAR EQUILIBRIUM CALCULATIONS

A numerical implementation of the MRxMHD theory, the

Stepped-Pressure Equilibrium Code (SPEC),21 was recently

developed. SPEC is capable of calculating three-dimensional

MRxMHD equilibria in slab, cylindrical, and toroidal geome-

tries. SPEC has been benchmarked against VMEC in the

axisymmetric case20,21 and has been used to reproduce self-

organized helical states in reversed field pinches.26

In this paper, we use SPEC in slab geometry in order to

benchmark the obtained nonlinear results against those of the

semi-analytical, linear model derived in Sec. III. First, we

consider the shielding of a magnetic island in the zero-

pressure, NV¼ 3 case, and the subsequent formation of the

singular d-current density at the rational surface. Figure 9

shows a sequence of Poincar�e plots obtained from

MRxMHD equilibria computed with SPEC with the exact

same input parameters as in Fig. 3. We observe the shielding

of the magnetic island around the rational surface, as pre-

dicted by the linearized model.

The theoretical predictions derived in Sec. III for the ge-

ometry of the internal interfaces and the magnitude of the d-

FIG. 6. Poincar�e plot of the magnetic

field line trajectories at fixed f¼ 0, for

a MRxMHD equilibrium with NV¼ 21,

i-0 ¼ 1:618, and p0¼ 10�3, and with

boundary perturbations R0,1¼ 0 and

R3,1¼ 1� 10�2. Left: X¼ 0.6, a¼ 1,

b¼ 2.5. Right: X¼ 0.1, a¼ 1, b¼ 2.5.

FIG. 7. Discontinuity in the m¼ 1 component of the poloidal field at each

interface as a function of the corresponding rotational transform i- for a

MRxMHD equilibrium with NV¼ 221 and X¼ 0.05. A divergent current is

established around i-res ¼ 0 for finite pressure gradient (p0¼ 10�3, black

stars), while it vanishes for zero-pressure (p0¼ 0, green dots).
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current established in the limit of no island, Eqs. (16), (17),

and (21), are benchmarked against the results of nonlinear

calculations carried out with SPEC. The results of such a

convergence study are shown in Figs. 10 and 11. The conver-

gence is clear and as expected the agreement between linear

and nonlinear results is improved as the boundary perturba-

tion is decreased.

Finally, we consider the multi-volume calculations with

finite pressure gradient. Figure 12 shows the results of SPEC

calculations for a MRxMHD equilibrium with NV¼ 63 vol-

umes, finite pressure gradient, and an island squeezed with

X¼ 0.04. The corresponding theoretical predictions of the

linearized model are also shown. Both curves confirm the

presence of a divergent pressure-driven current around the

FIG. 9. Sequence of MRxMHD equi-

librium states computed from SPEC

with decreasing X and where a¼ 1 and

b¼ 2.5. All input parameters are

exactly the same as in Fig. 3.

FIG. 8. Left: magnitude of [[Bh]]m¼1 across a fixed interface, as a function

of the pressure gradient jrpj � p0, showing a linear relation (black dashed

line has slope 1). Right: log-scale plot of the negative (blue circles) and posi-

tive (red crosses) sides of the curve in Fig. 7, showing a 1=i- divergence

(black dashed line has slope �1) near the resonant rational surface.

022501-8 Loizu et al. Phys. Plasmas 22, 022501 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

198.35.1.205 On: Mon, 02 Feb 2015 20:17:33



resonant rational surface. As discussed in Sec. III, this cur-

rent has a 1=i- divergence and a magnitude proportional to

the pressure gradient.

V. CONCLUSIONS AND OUTLOOK

In this paper, we have developed an understanding of

how MRxMHD can capture the formation of the singular

currents that are expected in non-axisymmetric ideal MHD

equilibria. A semi-analytical model that considers linearized

MRxMHD equilibria in slab geometry has been derived and

provides a theoretical framework in which to explore the

physics of magnetic island shielding and singular current for-

mation. In particular, the Hahm-Kulsrud-Taylor solution7 for

the magnitude of the d-current in slab geometry can be

retrieved. The model has then been used as a guide to

retrieve the ideal MHD limit in nonlinear equilibrium calcu-

lations carried out with the SPEC code.

The results presented here are, to our knowledge, the first

nonlinear MHD equilibrium calculations showing the forma-

tion of both d-currents and pressure-driven 1/x currents around

resonant rational surfaces. Moreover, the results presented

here encourage the use of MRxMHD to perform magnetic

equilibrium calculations in three-dimensional magnetically

confined plasmas, where both magnetic islands and singular

currents are expected to exist. In particular, SPEC is capable

of computing MRxMHD equilibrium states in slab, cylindri-

cal, and toroidal geometries and thus represents a promising

tool for the computation of three-dimensional magnetic equili-

bria in fusion devices.

In the future, cylindrical MRxMHD equilibria will be

considered in order to retrieve the Rosenbluth-Dagazian-

Rutherford solution8,27 for the saturated m¼ 1, n¼ 1 ideal

kink mode and the current sheet associated with it. This

should represent a step further in the computation of three-

dimensional MHD equilibria with singular currents in toroidal

geometry. Also, the presence of secondary islands around a

shielded rational surface,28,29 which are compatible with

MRxMHD, will be studied. Finally, the possibility of mag-

netic island shielding with a single ideal interface presenting a

discontinuous rotational transform will be explored. This is

motivated by the results of Appendix C, which suggest that

the only sequence ensuring no overlapping of interfaces is one

with a¼ 0, b> 0, thus leading to a discontinuous transform.
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APPENDIX A: SINGLE-VOLUME, PERTURBED
SOLUTION

The general solution to Eq. (11) is the sum of the homo-

geneous solution and a particular solution to Eq. (11)

bfðsÞ ¼ ayðsÞ þ âŷðsÞ � �l½�0ð1� sÞ þ �1ð1þ sÞ�Bh;u; (A1)

where a; â are constants and fy; ŷg is the basis of functions

for the homogeneous solution

FIG. 10. Convergence of the SPEC results towards the theoretical prediction

of the linearized model for the geometry of the internal interfaces, Eqs. (16)

and (17), as X ! 0. Circles and crosses correspond, respectively, to the

errors in the m¼ 0 and m¼ 1 components of the internal interfaces geome-

try, namely, E ¼ jDSPEC
1 � 1=2j and E ¼ jRSPEC

1;1 � jR3;1=2j. As expected,

decreasing the boundary perturbation amplitude, �¼R3,1, improves the

agreement between the linear and nonlinear results for the m¼ 1 component,

while the m¼ 0 component does not depend on the boundary perturbation.

The dashed line has slope b, which is the expected convergence rate for the

m¼ 0 component of the geometry.

FIG. 11. Convergence of the SPEC results towards the theoretical prediction

of the linearized model for the d-current amplitude, Eq. (21), as X ! 0.

Circles and crosses correspond, respectively, to the errors in the m¼ 0 and

m¼ 1 components of the field discontinuity, namely, E ¼ j½½Bh��SPEC
m¼0 j and

E ¼ j½½Bh��SPEC
m¼1 þ 4kB0 sin �lðtan k þ cotkÞR3;1j. As expected, the agreement

between the linear and nonlinear results is improved for the m¼ 1 compo-

nent by decreasing the boundary perturbation amplitude, while the m¼ 0

component does not depend on the boundary perturbation. The dashed line

has slope a, which is the expected convergence rate for the m¼ 0 component

of the field discontinuity.

FIG. 12. Discontinuity in the m¼ 1 component of the poloidal field at each

interface as a function of the corresponding rotational transform i- for a

MRxMHD equilibrium with NV¼ 63, R3,1¼ 10�2, p0¼ 10�3, and X¼ 0.04.

A divergent current is established around i-res ¼ 0. Red circles are from

SPEC and black stars are from the linearized model.
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fy; ŷg ¼
f cosðksÞ; sinðksÞg if k � 0

feks; e�ksg if k < 0;

(
(A2)

with k �
ffiffiffiffiffiffi
jkj

p
. Imposing the boundary conditions,

bf(61)¼ 0, we find a and â. For k� 0, or equivalently

l� 1, we have

a ¼ �l
cos k

�1Bh;u 1ð Þ þ �0Bh;u �1ð Þ
� 	

; (A3)

â ¼ �l
sin k

�1Bh;u 1ð Þ � �0Bh;u �1ð Þ
� 	

; (A4)

and for k< 0, or equivalently l< 1, we have

a ¼ �l

sinh 2kð Þ
�1Bh;u 1ð Þek � �0Bh;u �1ð Þe�k
� 	

; (A5)

â ¼ � �l

sinh 2kð Þ
�1Bh;u 1ð Þe�k � �0Bh;u �1ð Þek
� 	

: (A6)

The three components of the perturbed solution for the

magnetic field, which are coupled via the Beltrami equation,

are then

bs ¼ �
D2

4�l
ay1 sð Þ þ ây2 sð Þð Þ;

bh ¼ �
1

�l
ay01 sð Þ þ ây02 sð Þ
� 	

þ �l �0 1� sð Þ þ �1 1þ sð Þ

 �

Bf;u;

bf ¼ ay1 sð Þ þ ây2 sð Þ � �l �0 1� sð Þ þ �1 1þ sð Þ

 �

Bh;u; (A7)

and are uniquely determined by the parameters ð�l;B0; B̂0;
D; �0; �1Þ. Equation (A7) satisfies the Beltrami equation,

r�B¼ lB, up to first order in �.

APPENDIX B: TOROIDAL FLUX AND ROTATIONAL
TRANSFORM

The rotational transform on the interfaces is given by

_h
6 � B � rh

B � rf

����
s¼61

¼ Bh;u sð Þ þ bh sð Þcos h
Bf;u sð Þ þ bf sð Þcos h

����
s¼61

; (B1)

where the magnetic field components are given by Eq. (10)

together with Eq. (A7). In particular, we have that

bf(s¼61)¼ 0. Equation (B1) is a function of h and there-

fore a “local” quantity. We can however introduce a straight-

field-line angle, hs ¼ hþ w sin h, with w� � such that

B � rhs

B � rf

����
s¼61

� i-6 (B2)

is a constant. This constrains the value of w

i-6 ¼ B � rh
B � rf

����
s¼61

dhs

dh

¼ Bh;u 61ð Þ
Bf;u 61ð Þ þ

wBh;u 61ð Þ þ bh 61ð Þ
Bf;u 61ð Þ cos hþ O �2ð Þ; (B3)

giving w6¼�bh(61)/Bh,u(61) and therefore the rotational

transform is, to first order in �

i-6 ¼ Bh;u 61ð Þ
Bf;u 61ð Þ ¼

6B0 sin �lð Þ þ B̂0 cos �lð Þ
B0 cos �lð Þ7B̂0 sin �lð Þ

; (B4)

which is the unperturbed rotational transform.

The enclosed toroidal flux in the volume is given by

Dwt¼
ð

R
B �dr

¼
ð2p

0

ð1

�1

J s;hð ÞBf s;hð Þdsdh

¼D
2

ð2p

0

ð1

�1

1þ �1� �0ð Þcosh
� 	

Bf;u sð Þþbf sð Þcoshð Þdsdh

¼ 2pB0Dsin�l=�lþO �2ð Þ; (B5)

where J ¼ ffiffiffi
g
p

is the Jacobian. Equation (B5) is, to first

order in �, the unperturbed toroidal flux.

APPENDIX C: MULTI-VOLUME, FORCE-BALANCE
CONDITION

Assume that ðDwt;l; i-
þ
l ; i-
�
l ; plÞ are provided in each vol-

ume, as well as the system size Lsys ¼
PNV

l¼1 Dl. Inverting

Eqs. (B4) and (B5), we can determine ð�ll;Ql; Q̂lÞ, where

Ql�B0lDl and Q̂l � B̂0lDl. Then, the parameters that need to

be determined in order to uniquely define the solution for B

are {Dl, Rl,1} for l¼ 1,…NV, and these can be computed by

solving the force-balance condition, which is

pþ B2

2

� �� �
¼ 0; (C1)

where [[x]]¼ xlþ1(s¼�1)� xl(s¼þ1) is the difference in x
between the outer side and the inner side of each internal

interface separating volumes V l and V lþ1. We thus need to

compute the quantity B2
l on the interfaces, which is

B2
l ð61; hÞ ¼ B2

hð61; hÞ þ B2
fð61; hÞ þ Oð�2Þ

¼ fl;0 þ 2 cos hf 6
l;1 þ Oð�2Þ; (C2)

where fl;0 ¼ B2
0l þ B̂

2

0l and f 6
l;1 ¼ Bh;uð61Þbhð61Þ, which can

be written in terms of ð�ll;Ql; Q̂lÞ and the yet-not-determined

geometrical parameters {Dl, Rl,1}, with l¼ 1,…NV.

The m¼ 0 component of the force-balance condition

across each interface, which is 2plþ fl,0¼ 2plþ1þ flþ1,0 can

be written as

2ðpl � plþ1ÞD2
l D

2
lþ1 þ ðQ2

l þ Q̂
2

l ÞD2
lþ1

� ðQ2
lþ1 þ Q̂

2

lþ1ÞD2
l ¼ 0 (C3)

and consists of a nonlinear system of NV� 1 equations for

{Dl}, although the system becomes linear in the zero-

pressure limit.

The m¼ 1 component of the force-balance condition

across each interface, which is fþl;1 ¼ f�lþ1;1, can be written as

ðCþl � C�lþ1ÞRl;1 þDlþ1Rlþ1;1 þDlRl�1;1 ¼ 0 (C4)

and consists of a linear system of NV� 1 equations for

{Rl,1}, where C6
l and Dl are defined as

022501-10 Loizu et al. Phys. Plasmas 22, 022501 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

198.35.1.205 On: Mon, 02 Feb 2015 20:17:33



C6
l ¼6

kl

D3
l

Ql sin �ll6Q̂l cos �ll

� 	2
tan kl � cotklð Þ

þ �ll

D3
l

6 Q2
l � Q̂

2

l


 �
sin 2�ll þ 2QlQ̂l cos 2�ll

h i
; (C5)

Dl ¼
kl

D3
l

Q̂
2

l cos2�ll � Q2
l sin2�ll


 �
tan kl þ cotklð Þ; (C6)

for ll> 1 and similarly for ll< 1. The system (C4) can be

written as a matrix equation

MR ¼ S; (C7)

where R ¼ ðR1;1;R2;1;…;RNV�1;1Þ and M, S are known

once the system (C3) has been solved. More precisely,

S ¼ ð�D1R0;1; 0;…; 0;�DNV
RNV ;1Þ and

M¼

Cþ1 �C�2 D2 0 0 0

D2 Cþ2 �C�3 D3 0 0

0 D3 Cþ3 �C�4 . .
.

0

..

. ..
. . .

. . .
.

DNV�1

0 0 0 DNV�1 CþNV�1�C�NV

0
BBBBBBBBB@

1
CCCCCCCCCA

(C8)

is an (NV� 1)� (NV� 1) tridiagonal matrix.

In the zero-pressure, NV¼ 3 case, system (C3) is linear

in {Dl} and the solution is

D1 ¼
h13

1þ h13 þ h23

Lsys; (C9)

D2 ¼
h23

1þ h13 þ h23

Lsys; (C10)

where

h13 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ2

1 þ Q̂
2

1Þ=ðQ2
3 þ Q̂

2

3Þ
q

(C11)

and

h23 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ2

2 þ Q̂
2

2Þ=ðQ2
3 þ Q̂

2

3Þ
q

(C12)

are given, and here we take Lsys¼ 1. The system (C7) can

then be solved for R by inverting the matrix M, namely,

R ¼M�1S. Consider the limit defined in Sec. III, namely,

i-6
2 ¼ 6Xa and DWt,2¼Xb, where a, b> 0, and X ! 0. In

this case, we have Q̂2 ¼ 0; Q2 � Xb, and ðQ1; Q̂1; �l1Þ
¼ ðQ3;�Q̂3; �l3Þ � ðQ; Q̂; �lÞ, therefore h13¼ 1 and h23

�Xb. Hence, as expected, limX!0 D2 ¼ 0 and limX!0 D1

¼ limX!0 D3 ¼ 1=2. On the other hand, all the elements of

M go to zero in this limit, yet the elements of S do similarly

and a non-trivial solution for R still exists. For a� b, we get

limX!0 R1;1 ¼ jR0;1 and limX!0 R2;1 ¼ jR3;1, which does

not make the island vanish except in the trivial case

R0,1¼R3,1. For b> a, however, we get

lim
X!0

R1;1 ¼ lim
X!0

R2;1 ¼
j
2

R0;1 þ R3;1ð Þ ; (C13)

and thus the island vanishes asymptotically as X ! 0. The

function j 2 [0, 1] is given by

j ¼ � lim
X!0

D3

2Cþ1
¼ k

�l
tan k þ cotk

tan �l þ cot�l
; (C14)

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � 1

p
=4 and �l ¼ l=4. Also, in the limit

X! 0, we have that i-þ3 ¼ tanðl=2Þ and thus j ¼ jði-þ3 Þ only

depends on the external rotational transform. Finally, one

must be careful and verify that the two internal interfaces do

not cross each other, i.e., check that jR2;1 � R1;1j < D2

when the volume V2 is squeezed. For b> a, we have jR2;1

�R1;1j � Xb�a and therefore jR2;1 � R1;1j=D2 � X�a. Thus,

the only way to ensure that the two internal interfaces do

never cross each other is to have a¼ 0. Alternatively, one

can first take the limit DWt,2 ! 0 and then take the limit

i-6
2 ! 0. In all cases, Eq. (C13) is satisfied.
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